
Prometheus: WPI’s 2011 Entry to IGVC

Advisor:

Taskin Padir

Co-Advisors:

Michael J. Ciaraldi
William R. Michalson
Stephen S. Nestinger
Kenneth A. Stafford

Authors:

Mehmet Ali Akmanalp
Computer Science

Ryan Doherty
Robotics Engineering

Jeffrey Gorges
Mechanical Engineering

Peter Kalauskas
Computer Science

& Robotics Engineering

Ellen Peterson
Robotics Engineering

Felipe Polido
Electrical and Computer Engineering

& Robotics Engineering

Faculty Advisor Statement:
I, professor Taskin Padir of the Robotics Engi-
neering Program and Electrical Computer En-
gineering Department at Worcester Polytech-
nic Institute, Worcester do certify that the de-
sign and implementation of this vehicle has been
credited to each team member for their work.

May 9, 2011



1 Introduction

2011 marks the second year of Worcester Polytechnic Institute’s (WPI) Prometheus at the IGVC. The 2010 team

was honored with the Rookie of the Year award for their great accomplishments as a first year entry. Although the

team did well, there was still plenty of room for improvement. With a new team taking over for 2011, these areas were

researched and improved to make Prometheus an even more competitive entry to the IGVC.

Capabilities 2010 2011

Accurate Compass X X

Accurate DGPS X

External Interface X

Innovation X X

JAUS X X

Effective Line Detection X

Localization X

Modular Payload X

Obstacle Avoidance X X

Path Planning X

Reconfigurable Camera Mounts X

Touchscreen X

Visual Cue X

Waypoint Navigation X

Figure 1: Comparison of the capabilities of
Prometheus 2010 and Prometheus 2011.

Table 1 illustrates the capabilities of Prometheus 2011 versus

those of Prometheus 2010. Efforts were in large part focused on

giving Prometheus the intelligence capabilities necessary to be com-

petitive in the autonomous and navigation challenges. These can

be summarized as line detection, localization, path planning, and

waypoint navigation.

Other efforts were focused on improving the overall usability

of the robot. Easy interaction with the robot greatly reduces the

time required for developing, debugging, and testing. This is ac-

complished through the external interface, touchscreen, and visual

cue.

Finally, improvements were made to the robot’s chassis. Recon-

figurable camera mounts were designed and fabricated in a way that

allows camera height and angle to be adjusted based on weather con-

ditions or visibility range. A cover redesign has given Prometheus

a modular payload area, meaning various devices can be attached.

It has also allowed for easier access to, and separation of, batteries

and processing components.

1.1 Team Organization and Design Process

The Worcester Polytechnic Institute team is comprised of six

members with a variety of skills and specialties. To most effectively complete the tasks necessary to produce a qualifying

and competitive IGVC robot, we split up the team as shown in the table below.

Task

Team member Chassis

Upgrades

Control

System

Line De-

tection

Localization Obstacle Detec-

tion & Avoidance

Sensors Waypoint

Navigation

Mali Akmanalp X

Ryan Doherty X X

Jeffrey Gorges X

Peter Kalauskas X X

Ellen Peterson X X

Felipe Polido X X X

The team used an iterative design process in all aspects of the project, including software and mechanical design.

This process is detailed in the figure below. Each design decision was made by using this process, as performed by a

team member who is experienced in that area.

1



Determine
Problem

Define
New Re-

quirements

Brainstorm
Possible
Solutions

Narrow
Down

Solutions

Simulation
Solution

Implement
and Test
Solution

Deploy

Figure 2: Design process for Prometheus 2011.

2 Prometheus Overview

Prometheus has a custom aluminum chassis with a reconfigurable payload area. Its differential drive system with

a steered front wheel allows for high maneuverability and zero-point turning radius. Additionally, the vehicle’s power

comes from two interchangeable 12V 55Ah sealed lead acid batteries connected in series.

LIDAR 

Steered 

Front 

Wheel 

Modular Payload 

Cameras 

IMU Touchscreen 

Monitor 

Differential 

Drive 

External 

Interface 

Emergency 

Stop 

GPS 

Receiver 

On Board 

Computer 

& cRIO 

(a)

LIDAR 

Steered 

Front 

Wheel 

Modular Payload 

Cameras 

IMU Touchscreen 

Monitor 

Differential 

Drive 

External 

Interface 

Emergency 

Stop 

GPS 

Receiver 

On Board 

Computer 

& cRIO 

(b)

Figure 3: Overview of the components of Prometheus 2011.

In order to accomplish the challenges presented by the IGVC, Prometheus has an array of sensors on board. These

include a PNI Fieldforce TCM inertial measurement unit, a Trimble AG DGPS receiver with OmniStar HP subscription,

2x Point Grey Flea2 Firewire cameras, a SICK LMS-291 LIDAR rangefinder, and US Digital optical encoders. For the

vast amount of data processing and low level interfacing Prometheus relies on a National Instruments cRIO unit and a

custom built on board computer (Intel Core i7 Quad, 6GB DDR3 RAM). Moreover, the development team is able to

interface with Prometheus through the included router’s Wi-Fi, the built-in touch screen, a 6 channel remote control,

and a centralized external interface panel.

2



3 Robot Structure

3.1 Usability Improvements

Prometheus main purpose is to be a functional autonomous ground vehicle. However, for the vast majority of time

it operates under testing conditions. Most of the research and prototyping on Prometheus is done on one specific

subsystems at a time, such as vision detection, mapping, or sensor fusion. Our team believes having an emphasis on the

human-robot interaction portion of Prometheus ultimately makes the developing, debugging and testing phases happen

significantly faster and smoother. In order to accommodate such a requirement we came up with a multifaceted solution.

The improvements to Prometheus’ chassis include:

� Creation of a robot external interface panel.

� Top cover redesign for environment isolation and sensor reposition.

� Addition of a touch screen monitor to the chassis for information transmission and control.

� Addition of a visual cue informing the current status of the robot.

� Smoother control under manual mode.

First, the need for an external interface occurs from the recurring interaction with the many different hardware

components susceptible to weather damage. During debugging there is a need to directly interact with Prometheus’

on-board computer, cRIO and power systems. Last year’s design required the top cover to be openend any time a

component had to be resetted or a wire connected, gratuitously exposing the many electronic components to a non-

friendly environment. A central weatherproof external interface is a straighforward solution to this problem.

Switches

4-port USB Hub

E-stop

Voltmeter

Ethernet and 12V 

Output

IMU

Figure 4: The external interface components, the IMU and the emergency stop button.

Second, prior to the IGVC rule’s update our team was already brainstorming a form to quickly visualize Prometheus’

state during development. The final design is a highly visible lighting system that changes color reflecting the state of

the robot. Our team opted for adding strips of 12V weatherproof RGB LED; the strips are powered through N-Channel

MOSFETS controlled by the NI cRIO. The use of an independet Pulse Width Modulation(PWM) signal for each channel

allows for a practically infinite amount of color conbinantions.

The visual cue has become an essential component of Prometheus. The different colors are clearly associated with

Prometheus’ respective states,such as purple for manual mode,and blinking red for autonmous. The user can quickly

glance at the vehicle and know what to expect from its behavior, as well be reminded of a low battery condition.

Examples of the visual cue can be seen in Figure 5.

Third, Prometheus is made to drive autonomously, but having a manual remote control is essential during transporta-

tion, debugging, and developing phases. Last year setup involved using a joystick through a laptop connected wirelessly;

this configuration suffered in range and had a significantly slow starting procedure. The solution was to switch to a RC

3



Figure 5: Different visual cue colors representing different states.

hobby system controller, the Futaba 6-channel 2.4GHz Transmitter and Receiver. The extra communication channels

on the remote control allow us to bind a switch to the wireless emergency stop. The remote control works flawlessly

at over 100m range. Another channel was binded to an autonomous/manual switch, featured that proved to be very

practical during testing.

Lastly, the addition of a monitor to Prometheus’ chassis greatly improved usability. A monitor allows real-time

feedback of the many systems of the robot in a concise and informative way. After extensive research and comparison

we decided on a 3M MicroTouch Display C1500SS (15”) Serial. This solution is visible in direct sunlight, rugged,

relatively small, DC powered and the touchscreen capabilities allow for a simple user interface. The monitor greatly

improved field testing. The ability to quickly analyze the line detection, local map, and waypoint navigation proved to

be crucial. This can be seen in Figure 5(a).

The usability improvements made on Prometheus proved to be very effective during field test. The enhancements

allow quick testing, swapping, and comparing of different algorithms. It also permits us to identify software bugs and

hardware malfunctions much faster than before, ultimately decreasing development time.

3.2 Safety

In order to comply with the IGVC rules Prometheus is equipped with a hardware emergency stop (E-stop) as well

as a wireless E-stop. The hardware E-stop is connected directly to a set of relays that shut power off to all systems, the

e-stop red button is conveniently located on the top back part of Prometheus.

The wireless E-stop is connected through the cRIO to a set of relays that shut off power to the three motor controllers,

disabling any movement. The old design relied on a car alarm system as their wireless E-stop; as a spectrum frequency

analysis demonstrated the old system operated within interference frequencies generate from the vehicle’s motors and on-

board computer, which substantially decrease the operating range. This year the wireless E-stop circuitry is connected

to the 6-channel 2.4GHz Futaba controller, which operates far beyond the interference frequency levels and has naturally

a much higher range and reliablity.

3.3 Electrical Design

Prometheus 24V DC power source comes from two 12V 55Ah Sealed Lead Acid batteries connected in series. Em-

pirical testing has confirmed the theoretical values and shown that the vehicle can operate for one hour and a half in a

fully charged set of batteries. Additionally, the vehicle can idle for approximately six hours. A second pair of batteries

in conjuction with 40 A chargers allows us to run Prometheus continuosly for unlimited periods of time.

4



Component Max Power (W) Nominal Power (W) Idle Power (W)

Computer 367.8 344 344
GPS Reviever+ Antenna 4.2 4.2 1
Drive motor 1 1200 600 0
Drive motor 2 1200 600 0
Steering Motor 34.7 15 0
cRIO-Chassis 20 20 20
cRIO- Modules 28 20 20
LIDAR 30 20 20
Camera 7.6 7.6 7.6
Visual Cue LED Strip 12 12 12
Monitor Touchscreen 25 25 20

Total 2929.3 1667.8 444.6

Table 1: The power consumption of Prometheus’ various components. The battery power available is 2640 Watts.
The expected running times for max power, nominal power, and idle power are 0.90 hours, 1.58 hours, and 5.94 hours
repesctively.

3.4 Mechanical Design

A number of improvements have been implemented for the design and functionality of the mechanics of the robot.

. One problem that last year’s team encountered was difficulties discerning the painted lines on the grass, often due to

low angle light or not being able to see lines close to the front of the robot. To minimize glare from low angle light,

polarized filters were added to the lenses and the cameras were relocated higher and further forward on the robot. The

viewing angle was improved and the minimum distance of the field of view was also improved as shown in Figure 6.

Figure 6: Comparison of the location of the camera in the old and new Prometheus designs.

In order to improve the use of the robot for different applications, the camera mounts are designed to be adjustable.

With the previous design, only the pitch of the cameras could be adjusted. To allow for more configurations, the new

design allows for the adjustment of the height, pitch, individual yaw and baseline for the two cameras as shown in

Figure 7(b).

(a) The old camera mounts with adjustable pitch

Yaw

Pitch

Baseline

Height

(b) New design adjustable for yaw, pitch,
height, and baseline

Figure 7: Comparison of the old and new camera mount designs.

5



Figure 8: Planar knurling used to
keep rotational joints from slipping.

Maintaining position stability and repeatability were two important design

criteria for the new camera mounts. A planar knurling design, as shown in Fig-

ure 8, is used between the two faces for both the pitch and the yaw adjustment.

The top cover was redesigned to include a modular payload area. The old

design of the cover included an internal payload area for objects the size and

weight of a cinderblock. This limits the type of payload considerably. Having a

modular, external payload platform allows for a much wider range of uses.

The final design for the cover includes the fixed front cover with side doors to

the computer compartment and a back cover that opens to access the batteries

and drive train. The back cover has four extruded aluminum t-slot bars to which

a wide variety of components can easily be attached. One device that was built

for the robot was a lawnmower that attaches to the back cover, as shown in Figure 9(a), to be used in the ION Robotic

Lawnmower competition. Other attachment possibilities for future robotics research include a quad rotor landing pad

or a robotic arm as shown in Figures 9(b) and 9(c).

(a) Lawn mower attachment (b) Unmanned Ariel Vehicle (UAV) land-
ing pad attachment

(c) Robotic arm attach-
ment

Figure 9: Prometheus with various attachments for its modular payload area.

3.5 Sensors

Prometheus 2010 used an array of sensors that gave the robot information about its surrounding. The robot got

velocity with optical wheel encoders on the back driven wheels, position with a differential global positioning system

(DGPS) receiver, heading with a compass, and information about obstacles with a light detection and ranging (LIDAR)

sensor. Unfortunately, the team was unable to qualify at IGVC 2010 due to several problems with the sensors.

The 2011 team decided that several new design innovations were needed in order to succeed at the IGVC. These

included a new DGPS receiver and the addition of an inertial measuremet unit (IMU). The team also fixed problems

gathering reliable data from the encoders and updated the LIDAR data collection.

3.5.1 Wheel Encoders

Due to excessive sensor error, the 2010 team could not rely heavily on the encoder data, making Prometheus unable

to navigate successfully. This year, the team determined that the encoder data was unreliable because the cRIO has

a sampling rate of 110 KHz and the encoders have a 15 KHz signal, which was overloading the cRIO data acquisition

system.

The 2011 team fixed this overloading problem by decreasing the encoder signal to a lower frequency, passing it

through a logic counter chip. Once this was done, the team saw much more reliable data from the encoders.

6



3.5.2 Differential GPS Receiver

The 2010 team experienced very high position error with the Sokkia Axis1 DGPS at the IGVC. Because of this, the

2011 team decided to use the Trimble AG252, which has an OmniSTAR subscription and 10 centimeter accuracy.

3.5.3 Laser Measurement Sensor

The 2010 team implemented successful obstacle detection and avoidance the IGVC in 2010. The 2011 team, however,

discovered that data was only being gathered in a 90 degree window in front of the robot. This was adjusted and the

lIDAR now reads 180 degrees, giving the robot much more information about it’s surroundings.

3.5.4 Inertial Measurement Unit

Prometheus 2010 was outfitted with a basic 2-axis compass module. The 2011 team decided that more capabilities

were needed for further development. The team added a PNI 6 degree-of-freedom IMU, which gives Prometheus much

more information about its location.

4 Intelligence

4.1 Software Architecture

Two main design considerations for the software architecture were extensibility and modularity. The architecture

must be modular because it is likely that future teams will want to easily swap out current components of the system

with different ones. The architecture must be extensible because it is likely that we have not foreseen all the possible

use cases for the research platform, and the architecture might need to be adapted to those use cases.

4.1.1 Data Flow

There are two separate computers on Prometheus. The first one is the Onboard Computer (OBC) which is a standard

x86 64 computer that runs Ubuntu Linux. The OBC is used for high level tasks such as path planning and waypoint

navigation, line detection, and obstacle detection. The second one is a National Instruments cRIO that runs VxWorks.

The cRIO contains an FPGA and low level I/O connections, which makes it suitable for low-level data collection tasks

such as gathering data from the encoders and the IMU, and performing motor controls and the front wheel differential

drive. Additionally, the cRIO houses our Kalman Filter which fuses the different available sources of odometry data.

Since both of these systems require data from each other, as well as the controls laptop which displays realtime data,

there is a constant flow of information across the network. Figure 10 represents the end to end data flow inside the

system.

4.1.2 Framework

We have chosen to use Willow Garage’s Robot Operating System (ROS) as the underlying framework for our

code. ROS is essentially a set of pre-packaged opensource libraries supplemented with additional low level tools such

as a serialization and communications system, a build system, a data collector and visualizer. ROS lends itself to

the specified architectural requirements: Because software is arranged into “nodes” that that performs a single task,

modularity is idiomatically enforced. Data is shared through a publisher / subscriber method and services which means

that newly added nodes can also listen to these data sources and use these services, which aids extensibility.

7



On-Board 

Computer

LIDAR
Jaguars

Encoders

IMU

GPS

Touch 

Screen

Cameras

Laptop Router

NI cRIO

Figure 10: The major sensors and computing devices of Prometheus 2011.

In Prometheus 2010, the software was implemented as a single monolithic process with multiple threads that run

individually. This has several disadvantages:

� When two components need to share data, shared memory with locking is used which introduces difficult to debug

problems such as race conditions and deadlock. The new architecture shares data through message passing, which

eliminates such problems.

� It is difficult to swap out components while the system is running. However with the new architecture, any

component can be started, stopped and replaced dynamically.

� If a thread crashes, it is likely to cause a catastrophic failure that affects the whole process. In comparison, in the

new architecture a crash is limited to a single node and there is a watchdog that automatically restarts any node

that dies.

4.1.3 Simulation

We have made use of logged data to extensively test Prometheus’ various software components. In addition, we have

written a simulator for the ROS framework that allows us to load maps from image files and test Prometheus’ path

planning ability on them. Figure 11 depicts the software used to both edit and visualize maps in simulation.

4.2 Localization

Localization is an important aspect of navigation. In order to get to different waypoints, we must know the robot’s

position. Current position is determined by adding the change in position to the previous position. This means that

any error in sensor measurements will be present in the position calculation, and continually accumulate over time. A

good solution to this problem is the implementation of an extended Kalman filter (EKF).

Prometheus 2010 had no form of sensor error reduction for localization. Determination of the robot’s state was solely

dependent on the calculation of position based on wheel encoders, a compass, and the previously mentioned unreliable

DGPS receiver. This year’s team was able to successfully implement an EKF. The filter is applied to the wheel encoders

and IMU, and initialized with the position obtained from the DGPS receiver.

The overall goal of our implementation of an EKF is to determine our robot’s state in terms of its position and

8



(a) A map being edited as an image file in GIMP (b) Prometheus navigating on an occupancy grid loaded
from an image file.

Figure 11: A simulation of the robot performing navigation on a map loaded from an image file.

heading. Our state vector is described in Equation 1, where x and y are the robot’s Cartesian coordinates in meters in

a local frame, and θ is the robot’s heading in degrees.

~x =
[
x y θ

]T
(1)

The filter is updated with measurements from the encoders and IMU. The form of our measurement matrix is shown

in Equation 2.

z =

 left velocityright velocity

θ

 (2)

4.2.1 Testing and Results
Two Rectangular Laps

of Building’s Halls Indoors

Y Coordinates (meters)

Y
 C

o
o
rd

in
a
te

s 
(m

e
te

rs
)

Kalman Filter 

Output

Raw IMU & 

Encoder Data

Figure 12: Raw sensor position and filtered sensor
position while driving two laps around a campus build-
ing.

The EKF is run in LabVIEW where incoming sensor data

can be input directly. Testing was performed by doing laps

of a rectangular building on campus. During this time, the

raw and filtered sensor positions were being logged. Figure 12

shows how the raw sensor position (red) accumulated error and

caused drift during the second lap of the building. In the filtered

sensor position (blue) it can be seen that the two laps were much

more overlaid, indicating that the error accumulation was being

reduced.

4.3 Line Detection

One requirement that Prometheus must fulfill is to not cross

the white or yellow solid and dashed lines that indicate the

9



boundaries the robot must drive in. Since the only easily distinguishable feature of these lines is their visual appearance,

image processing must be used to detect the lines. Two cameras cover the front area of the robot to an approximate

range of 4 meters with the current camera alignment. The processing for the data from these two cameras is done using

the Willow Garage OpenCV library.

4.3.1 Image Capture

The image is captured over ieee1394 at 1024x768 at 15 fps per camera. This data is constantly published for further

processing down the pipeline. This has the advantage of decoupling the image capture from the image processing, which

means that we can also record live image data to use in simulations, or easily switch to using different image sources.

4.3.2 Inverse Perspective Mapping

Since the cameras are angled forwards but the data we wish to obtain is from the top-down perspective, the image

data must be transformed to the top-down point of view. To do this, we make use of the “Flat Ground Assumption”

which states that the ground is completely planar and always at a specific angle to the robot. This assumption allows

the placement of lines in 3D space without depth perception. While this might be an unacceptable for applications

where the terrain heavily varies, the competition grounds are mostly flat, and the small errors remain negligible.

(a) Unfiltered control image. (b) Inverse Perspective Mapped image.

Figure 13: The effects of Inverse Perspective Mapping on an image of two rods placed in front of the robot.

4.3.3 Color Segmentation

The color content of a random sample of white line pixels through the camera were analyzed, along with a random

sample of different sorts of non-white areas like grass and soil. Then, the differences were identified. It was noted

that in the HSV (Hue, Saturation, Value) color space, the hues of the line pixels were largely distinct from most of

the other kinds of pixels. This left the detector with only a few false positives, mainly in exposed soil. Through the

previous analysis, it was determined that the value channel had different ranges of values for the two types of terrain,

so additionally limiting the range of value channel removed the false positives.

4.3.4 Pre-Processing and Post-Processing

The detection target, painted lines on grass, can be challenging to detect accurately on the raw image because of

the relative lack of contrast between the lines and the grass, the surface of the grass not being uniformly white and

containing shadows from the grass, and the paint wearing off (which from now on will be called “noise”). To elminate

the effects of noise, a series of image processing operators are applied to the image.

Smoothing brings outliers in the data set closer to the prevailing mean or median. The resulting image appears

blurred, but also less variance of different colored pixels within a given area. It was found empirically that median

10



(a) Inverse Perspective Mapped image. (b) Color segmented image.

Figure 14: Color segmentation only leaves relevant parts of the image for line detection.

(a) Before filtering. (b) After filtering.

Figure 15: The results of post processing using morphological opening and median filtering. As can be seen, the results
in 14(b) have much less noise.

filtering worked best to create the desired effect of contiguous smooth areas of similar colors.

Morphological opening and morphological closing are two morphological operations that have the effect of eliminating

contiguous foreground (bright) or background (dark) color regions in the image. This allows us to remove “salt and

pepper noise” which is a type of noise that consists of lots of unwanted and randomly distributed small specks.

4.3.5 Line Detection

A popular method for line detection in computer vision is a process called the Hough Transform, as described in

(Hough, 1962). The basic process of the Hough Transform involves iterating through each non-empty pixel and for each

pixel “voting” on what the point thinks are valid lines. Each pixel will vote for a specific number of lines going through

that pixel. More lines allow for more granularity, but add to processing complexity since this process must be repeated

for every pixel. Certain lines from collinear pixels will get a much higher amount of votes, which will be the “lines””

detected.

The Probabilistic Hough Transform (PHT) is a refinement of the standard Hough Transform, in which the pixels

are randomly sampled instead of processing every single pixel. Because of the way that the random normal distribution

works, this usually generates a sufficient amount of votes from the edges to detect lines, while saving time by not counting

a good amount of redundant votes.

4.3.6 Results

As can be seen from Figure 17, we have effectively developed a line detection system that functions robustly under

a wide variety of lighting conditions. While formal testing has not been conducted, during the routine testing of the

robot the line detection system has functioned well in many different times of day and different amounts of cloud cover,

11



(a) Source image. (b) Hough transform results.

Figure 16: The results of the Hough Transform overlaid on the source image.

as well as under indoor lighting. The performance limitation of the system running in a single thread on an Intel Core

i7 CPU is approximately 8 fps.

(a) Outside view. (b) Camera view with detected lines. (c) View of detected lines in rviz.

Figure 17: Demonstrating the three phases of detection.

4.4 World Representation

Prometheus needs to relate its position to the positions of nearby obstacles in order to perform obstacle avoidance.

We decided to do this by creating a probability map that estimates the positions of obstacles in the world. As the robot

moves, it updates the probability that a given position on the map is occupied by an obstacle.

Figure 18: Map being visual-
ized using an ASCII image by last
year’s team. A major improve-
ment for Prometheus this year
has been use of the robotics vi-
sualization software, rviz.

The technique for mapping currently used for Prometheus is similar to the one

used by last year’s team, in that a probability map is computed which is fixed

relative to the robot’s local frame. However, some major improvements have been

made. First, laser measurements and detected lines are now stored in the program

as a list of continuous points rather than being immediately converted to and stored

as discrete grid cells. The points are then later used to build a grid map that is

broadcast using a ROS message that can be visualized in rviz. This preserves more

accuracy from each measurement, because the map is fixed to the robot so there must

for determining when a measurement has moved from one grid cell to another is it

moves. Calculating the cell that a measurement occupies after the robot has moved

is easiest when using continuous points because we can transform the measurement

from its old location to its new location and then convert the point to a grid cell.

Another improvement we made was to use Bresenham’s line algorithm to fill in the

12



free spaces between the robot and obstacles. This allows us to distinguish between

unoccupied regions and regions that have not yet been observed.

(a) Local map without line of sight drawn
to the obstacles.

(b) Local map with line of sight drawn to
the obstacles.

(c) Local map using a 2.5 second timeout
for measurements that are in front of the
LIDAR.

Figure 19: The progression of the techniques used for creating the local map from LIDAR data. All techniques used
a maximum age of 10 seconds for the LIDAR measurements.

We also now use a more flexible design for the mapping program. Because our robot takes measurements from

different sensors, laser and cameras, we make use of polymorphism for the different measurements. The responsibility

of determining how each measurement should be drawn on the probability map is then delegated to the respective

sub-class. For example, camera measurements know to draw a line of occupied cells between each endpoint, and laser

measurements know to draw a single occupied cell for the obstacle as well as a line of unoccupied cells between the

robot’s position when the measurement was taken and the obstacle. The process of determining when a point expires is

also delegated to sub-classes. Given the maximum age and range, the measurement determines if it is too old or too far

from the robot. Because of our use of rviz, we were able to visualize the improvements made to the map during each

step of our implementation (see Figure 19). This is a major improvement over the ASCII map visualization (pictured

in Figure 18) used by last year’s team.

Lastly, the parameters for building the map are now much easier to change. The width, height, and resolution of the

map are all configurable by passing parameters to the mapping program. Additionally, parameters for configuring how

measurements are stored and drawn on the map are also available. These include the maximum age of a measurement

and the maximum distance a measurement can be from the robot. All parameters used for creating the map are outlined

in Table 2.

Parameter Description

Width The total number of cells on the map to the robot’s left and right.
Height The total number of cells on the map to the robot’s front and back.
Resolution The length of the side of each grid cell. Grid cells are always square.
Maximum age The maximum length of time for each measurement to persist in

memory.
Maximum range The maximum distance a measurement can be from the robot to

persist in memory. By default this is the distance to the corner of
the map.

Maximum size The maximum number of measurements to persist in memory at
any time. If this number is exceeded, the oldest measurements are
deleted to make room for new measurements.

Margin size The size of the margin between the last cell in the line of sight to
an obstacle and the obstacle itself.

Table 2: Listing of parameters used for building the probability map.

13



As expected, accurate odometry data is necessary to build a coherent map using the technique outlined above. In

testing, it was found that poor odometry data would cause the map to smear as the same static obstacle would contin-

uously be measured at a different location as the robot moved. To mitigate the smearing effect, the laser measurements

expire at different times depending on their location. Laser measurements that are in front of the LIDAR sensor expire

very quickly because they are likely to be observed during the next scan. However, once a laser measurement moves

behind the LIDAR sensor, it takes much longer to expire. This is done because laser measurements behind the robot

will likely not be observed again, but are still necessary to help the robot avoid brushing the sides of obstacles.

The local map program also performed considerably well on maps of varying resolutions. The main factor that

causes the program to slow down is the number of measurements stored in memory. It was determined in testing that

the number of measurements we can comfortably store in memory at a time is about 10,000 measurements. For this

reason, the number of measurements is currently limited to 10,000.

4.5 Path Planning

Figure 20: The arced paths
used for driving with tentacles on
Prometheus being visualized in
rviz.

Last year, the team was able to effectively avoid obstacles by generating and

evaluating a set of arced paths originating from the robot’s turning center. This

technique, sometimes referred to as driving with tentacles, is generally used for large,

outdoor vehicles and has been effectively used by a number of competitors in the

DARPA grand challenge (von Hundelshausen et al., 2008). One advantage of this

technique is that the paths are extremely easy to follow because each arced path can

be summarized by two motion commands: a linear velocity and an angular veloc-

ity. While last year’s team was successful in implementing tentacles and avoiding

obstacles, they were unable to plan long term paths to the goal. We were able to

overcome this problem by combining the tentacles algorithm with the A* path find-

ing algorithm discussed in Section 4.5.2. In addition, to keep up with the dynamic

nature of the robot environment, each of the algorithms used in the path planning

process is repeated as fast as possible.

4.5.1 Driving with Tentacles

Figure 21: The inflated
grid cells of an arced
path that account for the
width of the robot and
are used to evaluate the
drivability of a path.

We decided to continue using tentacles because of its known effectiveness in avoiding ob-

stacles. The code from last year was rewritten for compatibility with ROS and our local map

implementation. After generating a set of arced paths (see Figure 20), each path must be

evaluated for drivability. There are several methods of doing this, but in general most meth-

ods should take into account 1) the obstacles that the robot will encounter when driving on

the given path, and 2) how much following the path will help the robot reach its destination.

Because the local map is represented as an occupancy grid, the evaluation method needs

to convert tentacles to grid cells. In doing this, each tentacle is inflated to account for the

width of the robot. This extra padding around each tentacle is known as the classification

area (von Hundelshausen et al., 2008).

To inflate each arced path, a list of points for the inner and outer radius is generated

using the algorithm described in Figure 22. After the points for the inner and outer radii are

generated, each of the points is converted to a grid cell, and then Bresenham’s line algorithm

is used to connect each of the cells to create an outline that traces the inner radius and the

outer radius and connects both of their end points together. Following this, a point from the center of the arced path is

selected, and a flood-fill algorithm is run to fill in each of the grid cells of the boundary. An image of the grid cells for

14



an arced path is shown in Figure 21.

Algorithm GenerateClassificationArea
Input: A list, Lpath, of vectors on the path, and the width of the robot, W
Output: A list, Lclassification−pairs, of pairs of vectors that are the borders for the classification area of path
1. Lclassification−pairs ←∅
2. for vk in Lpath

(∗ For each vk, calculate v, the vector from the last point on the path to the vk ∗)
3. do v ←pk − pk−1

4. vdisplacement ←v rotated π
2 radians about the z-axis

5. vdisplacement ←vdisplacement normalized
6. vdisplacement ←vdisplacement ∗ W2
7. insert (vk + vdisplacement, vk − vdisplacement) into Lclassification−pairs
8. return Lclassification−pairs

Figure 22: Algorithm for determining the points on the edges of the classification area of a path. One advantage of
this algorithm is that the technique can be applied to other types of arced path as well. For example, if a tentacle
algorithm were used where the arced paths were replaced by Euler spirals, then the same algorithm would still be able
to determine the classification areas of the paths.

Once the grid cells have been generated, they can be overlaid on the map to evaluate each arced path. Both choosing a

tentacle that does not collide with an obstacle and choose one that will eventually lead to the goal are equally important.

However, mixing these two operations into one evaluation function could be dangerous, because if tuned incorrectly, a

path that hits obstacles to reach the goal may be rated higher than a path that takes a safer but longer route around

the obstacles. For this reason, it was decided to separate the tentacle evaluation functions, which determined the scores

of tentacles based on the local map, from the tentacle choosing function, which choose one of the rated arced path to

drive on.

4.5.2 Waypoint Navigation with A*

Figure 23: Tentacle planning and A* path plan-
ning for waypoint navigation. Drivable paths are
shown in green, undrivable ones in red, and the
best path in blue. The green grid cells show the
cells that the robot will occupy as it follows a path.

To plan a long term path to the goal, the robot needs to know the

general direction to drive in. This is more complicated than simply

finding the heading to the waypoint since obstacles may be obstruct-

ing the straight-line path between the robot and the goal. To guide

the robot in a direction that will avoid obstacles and eventually lead

to the waypoint, we first use the A* algorithm to calculate the best

path from the robot to the waypoint on the occupancy grid. Once

we know the best path, we choose to drive on the tentacle that most

closely follows this path.

There were a couple of issues we needed to overcome with A*

in order to make it effective for Prometheus. First, A* sometimes

calculates a best path through a small opening between obstacles

that the robot cannot fit through. To overcome this, we assigned a

distance value to each grid cell proportional to the number of nearby

obstacles. The second issue we ran into was A*’s slow running

time. To mitigate this problem, a timeout was added to the A*

calculation. If the algorithm takes longer than a specified time,

then the resolution of the grid is reduced, and A* is recalculated.

This process is repeated until A* finds the best path to the goal.

Once a path to the goal is found, the A* tentacle chooser function looks at each arced path that is rated above a

15



certain threshold. It uses the algorithm described in Figure 24 to find the arced path that is closest to the A* path. An

image of Prometheus driving with the A* tentacle chooser is seen in Figure 23.

Algorithm FindTentacleClosestToAStarPath
Input: A list, Ltentacles, of tentacles to be evaluated, and the best path to the waypoint, path, as calculated by A*.
Output: A tentacle in Ltentacles that is judged to follow the given path most closely.
1. for tentacle in Ltentacles
2. do Ldistances ←∅
3. for each point v in tentacle’s path
4. do d ←shortest distance from v to a point in Ltentacles
5. append d to Ldistance
6. score ←geometric mean of values in Ldistances
7. Associate score with tentacle
8. return tentacle in Ltentacles with lowest score

Figure 24: Algorithm for determining the tentacle closest to the path planned by A*.

4.5.3 Late Obstacle Avoidance

Figure 25: The inflated footprint being used to
prevent Prometheus from continuing to follow a
path that will cause it to strike an obstacle.

Once a tentacle is chosen, the robot sends the motor commands

to the control system. Unfortunately, it is sometimes possible for

the robot to mistakenly choose path that will eventually collied with

an obstacle. To prevent this, a method of late obstacle avoidance

is used in tandem with the path planning algorithms. An inflated

footprint of the robot’s shape, seen in Figure 25, is generated and

then overlaid on the occupancy grid to search for obstacles. If an

obstacle enters this footprint, the robot stops to avoid a collision

and then replans a path to the goal.

5 Conclusion

Figure 26: Prometheus in action during the
April 8, 2011 demonstration in Institute Park.

Prometheus 2011 brings major improvements to Prometheus

2010 in many areas to better fit the requirements of the robot. Me-

chanically, the chassis cover and camera mounts were completely re-

designed, and the usability was revamped accordingly. Concerning

intelligence, a new software architecture was built from the ground

up and new line detection and and path planning algorithms were

implemented, as well as a new sensor fusion system.

16



6 Budget

Item Cost (USD)

Touchscreen 3M� MicroTouch� Display C1700SS (15”) Serial 467.86
OCZ Vertex 2 60GB SATA II MLC Internal Solid State Drive (SSD) 129.99
External Interface 79.33
Futaba 6EX 2.4GHz 6-channel Remote Control 214.00
Chassis Improvements 925.43
cRIO Serial Module 579.00
Camera Lens 233.00
12V Schumacher SE-4022 Battery Charger and Tester 246.00

Subtotal 2874.61

Item Sponsorship Cost (USD)

OmniStar GPS Subscription OmniStar 850.00
TCM-XB Evaluation Kit (Inertia Momentum Unit) PNI 1,096.00
ThinkPad T410 Laptop Dyn 1,200.00

Subtotal 3146.00

Total Cost 6020.61

References

Hough, P. V. (1962). Method and means for recognizing complex patterns. US Patent 3,069,654.

von Hundelshausen, F., Himmelsbach, M., Hecker, F., Mueller, A., & Wuensche, H.-J. (2008). Driving with tentacles:

Integral structures for sensing and motion. J. Field Robot., 25 , 640–673.

Retrieved from http://portal.acm.org/citation.cfm?id=1405647.1405650.

17

http://portal.acm.org/citation.cfm?id=1405647.1405650

	Title Page
	1 Introduction
	1.1 Team Organization and Design Process

	2 Prometheus Overview
	3 Robot Structure
	3.1 Usability Improvements
	3.2 Safety
	3.3 Electrical Design
	3.4 Mechanical Design
	3.5 Sensors
	3.5.1 Wheel Encoders
	3.5.2 Differential GPS Receiver
	3.5.3 Laser Measurement Sensor
	3.5.4 Inertial Measurement Unit


	4 Intelligence
	4.1 Software Architecture
	4.1.1 Data Flow
	4.1.2 Framework
	4.1.3 Simulation

	4.2 Localization
	4.2.1 Testing and Results

	4.3 Line Detection
	4.3.1 Image Capture
	4.3.2 Inverse Perspective Mapping
	4.3.3 Color Segmentation
	4.3.4 Pre-Processing and Post-Processing
	4.3.5 Line Detection
	4.3.6 Results

	4.4 World Representation
	4.5 Path Planning
	4.5.1 Driving with Tentacles
	4.5.2 Waypoint Navigation with A*
	4.5.3 Late Obstacle Avoidance


	5 Conclusion
	6 Budget

